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1. Introduction

Galilean 3-space G, is simply defined as a Klein geometry of the product

space RXE? whose symmetry group B, is Galilean transformation group which

has an important place in classic and modern physics, for example, in quantum
theory, gauge transformations in elactromagnetism, in mecanics and conductivitiy
tensors in fluid dynamics, also in mathematical fields such as Lagrangian
mechanics, dynamics and control theory, and so on (see [1]).

A curve in Galilean 3-space G, is a graph of a plane motion. Note that

such a curve is called a worldline in 3-dimensional Galilean space. It is well known
that, the idea of worldlines originates in physics and was pioneered by Einstein. In
physics, a world line of an object is the sequence of spacetime events
corressponding to the history of the object. A world line is a special type of curve
in spacetime. Each point of a world line is an event that can be labeled with the
time and the spatial position of the object at that time. For example, the orbit of the
Earth in space is approximately a circle, a three-dimensional curve in space. The
Earth returns every year to the same point in space. However, it arrives there at a
different time. The world line of the Earth is helical in spacetime and does not
return to the same point.

The word line is now most often in relativity theories, i.e., general
relativity and special relativity. The theory of special relativity puts some
constraints on possible word lines. In special relativity the description of spacetime
is limited to special coordinate systems that do not accelerate, called inertial
coordinate systems. In such coordinate systems, the speed of light is a constant.
Word lines of particles or objects at constant speed are called geodesics. The use of
word lines in general relativity is basically the same as in special relativity with the
difference that spacetime can be curved. A metric exists and its dynamics are
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determined by the Einstein field equations and are depended on the mass
distribution in spacetime.

From the differential geometric point of view, the study of curves in G,
has its own interest. Many interesting results on curves in G, have been obtained
by many authors (see [4],[9]-[12]).

In this study, other important subject is normal and rectifying curves in
Galilean 3-space Gj. In the Euclidean 3-space, rectifying curves are introduced by

B.Y. Chen in [2] as space curves whose position vectors always lies in its
rectifying plane, spanned by the tangent and the binormal vector fields of the
curve. Rectifying curves and normal curves in Euclidean space and Minkowski
space are studied in [2],[5], [6]. A relationship between the rectifying curves and
the centrodes, which play some important roles in mechanics, kinematics as well as
in defining the curve of constant precession.

The literature survey indicated that, there is no normal and rectifying
curves in Galilean 3-space. Thus, the study is proposed to serve such a need. In this
paper, making use of method in [2] and [5], we define the normal curve and

rectifying curve in Galilean 3-space G, and characterize normal and rectifying
curves lying fully in G,. In particular, we prove that the ratio of torsion and

curvature of any rectifying curve in G, is nonconstant linear function of the

invariant parameter X. Also we obtain a parametrization of rectifying curves lying
fully in the Galilean 3-space.

2. Preliminaries

Let E2 = (R2(y, z),dy? + dz2) be Euclidean plane. The Galilean 3-space
is a product space
G, = RX)xE?(y,z)
with Galilean group By :
B ={f="F(v.0):G; >G;},
where

X 1 0 0 X a
f(v,o ) y|=|v’ cosp sing|y|+|b|
z vi sing cosg )\ z c
The Galilean group B, is generated by Euclidean motion group E(Z) and
constant velocity motions:
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X X

yl—=|y+vix|

z Z+V'X
An element f € By is called a Galilei transformation.

In G, there are four classes of lines:
a) (proper) nonisotropic lines - they do not meet the absolute line f .
b) (proper) isotropic lines - lines that do not belong to the plane w but
meet the absolute line f.
¢) unproper nonisotropic lines - all lines of w but f.
d) the absolute line f.
Planes X =const. are Euclidean and so is the plane w . Other planes are
isotropic, [8].
Foracurve c: |1 = G; , | < R parametrized by the invariant parameter
S = X, is given in the coordinate form
c(x)= (x,y(x).z(x)). (1)
The curvature zc(x) and the torsion r( ) are defined by
=y (0 + 2 (0 o) = 22 (X)”; (f();),c Wy

The associated moving trihedron is given by

T(x)=c (x)= Ly (x). (x))

N<x>=$c~< )zﬁ v (x)2" (x)), )

X
1 "
B00= 07" (" ()

In Affine coordinates, the Galilean scalar product between the points

P. =(x;,Y;,z,), i=1,2 is defined by
3 X, =% |, if X =X,
P,R), = .
ey {(yz =) +(z -2 ) i % =x,

The Galilean cross product is defined for a = (a,,a,,a,), b = (b,,b,,b;)

by [12]

0 e e
ax,b=la, a, a,,
b, b, b
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One can see that

1
F0)=(T00N()B)= | y () L) =2 ) @
w(x)  x(x)
2'(x)  y'(x)
k() x(x)
takes value in Bg. This mapping F(X) is called the Galilei frame of C(S). The
Galilei frame satisfies the following Frenet equations

Z (x)

d
&F Fl« O } (5)
From formulas (5), we have the following relation [11]
¢(x) = s{x)r(x)B(x)+ x{x)N(x) (6)

The vectors T,N and B are called the tangent, the principal normal and
the binormal vector of C, respectively.
The planes spanned by the vector {T,N}, {N,B}, {T,B} are called the

osculating plane, the normal plane and the rectifiying plane.
Galilean sphere of radius 1 and center at the origin is defined by

S’ ()= EG,| v, =1}
[4].

3. Some characterizations of normal and rectifying curves in G,

In this section, we define the normal curve and rectifying curve in G, and

give some characterizations for normal curves and rectifying curves lying fully in
the Galilean 3 -space.
Definition 1. Let C = C(x) be a curve in 3-dimensional Galilean space G. If the
position vector of C always lies in its normal plane then it is called normal curve in
G,.

By definition, for a curve in G, the position vector C satisfies

c(x) = S(X)IN(X) +7(x)B(x),
where X is a Galilean invariant-the arc length on ¢ and &(x),n(Xx) are
differentiable functions
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Theorem 1. Let C:c(x) be a normal curve in G, with constant

curvature x > 0 and nonzero constant torsion z. Then C is a normal curve if and
only if the principal normal and binormal components of the position vector C are
given by

<c,N> =¢(x)= —%;cxze‘z”X (e*™ -1)* + ‘llzcx (e™ +e™™)?

ke (i + X+ e (i + ) (—1—ix + *™ (1 - X))
472
ke P (L+itx +e¥™ (1-ix))°

- e Jr%Clxe‘”X (1+e?™)
T

- %Czixe‘”X (-1+e”™) + %Cse‘”X (1+itx + 2™ (1—izx))

- %Céte‘“X (=i + X+ 2™ (i + X))
and
—2iwx H 2itx 3 1k 2izx s
<¢,B> =y(x) = e " (1+ix+e™ (1 4::;»( 1-ix +e”™(1—itX)
e (i ax +e®™ (i + x)(L +irx + 6" (1-inx))
47?

+ %Clix(e"X —e ™)+ %Cz x(e™ +e™™)

+ %Cse‘“X (=i + X+ 2™ (i + X)) + %Céle‘irx (1+ix +e¥™ (1-iwx)),

respectively, where C,,C,,C; and C, are constants.

Proof. Let us suppose that C(X) is a normal curve, then from Definition 1, we have
c(x) = S(XIN(X) +7(X)B(X).

By taking the derivative of this equation with respect to X twice and using the

Frenet equations (2.5), we get following linear differential equation system

& —2r17' —t¥ =k
n +2t¢ —t°n=0.
By solving this system, we obtain

(X) - _ KXZe—erx (eZ|r>< 1) + iKX (eITX +e—|r><)
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xie ™ (i + o+ 7 (i + D)) (1 — inx+ 07 (1 X))
47°
—2itX H 2itx 3 2 ) )
— K€ (1 + ITX4+ 2e (1 ITX)) + %Clxelrx (1 + e2|r><)
T

- %CzixeirX (-1+e™™) + %Cse"X (1+ix +e”™ (1—izx))

—~ £C4e’i’X (—i + X + 2™ (i + X))

2
and
_ie ™ (L+ i+ e (1—ix))(~1—itx + e (1 - irx)
n(x) = >
4t
Ke 2™ (=i + ox + 2™ (i + X)) + ix + 7™ (1 —i7X))

472

+ %Clix(e‘”X —e ™)+ %sz(e"X +e ™)

+ %Cfie"X (=i + X+ 7™ (i + X)) + %C@"" (1+ix+e”™(1-iwx)),

respectively, where C,,C,,C; and C, are constants, which completes the proof.

Definition 2. Let C be a curve in 3-dimensional Galilean space G,. If the position
vector of C always lies in its rectifying plane then it is called rectifying curve in
G,.
Theorem 2. Let C = c(x) be a rectifying curve in G,, the curvature ;c(x) > 0.
Then the following statements hold:

(i) The distance function p = c| satisfies

p’ =‘x2 +mX+ n‘,
forsome meR, neR—{0}

(ii) The tangential component of the position vector of C is given by
€, T)y =x+m,

where m, € R.

(iii) The normal component ¢V of the position vector of the curve has a
constant length.

(iv) The binormal component of the position vector of the curve C is
constant.
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Conversly, if ¢ = c(x) is a curve in _ and one of the statements (l)
(ii), and (iii), (iv) holds, then ¢ is a rectifying curve.
Proof. Let us assume that ¢ =c(x) is a rectifying curve in G,. Then from
Definition 1., we can write the position vector of C by
c(x) = A(XJT (x)+ u(x)B(x), 7)
where A(x) and u(x) are some differentiable functions of the invariant parameter

X.
i) Differentiating the equation (7) with respect to X and considering the

Frenet equations (5) we get
Z(x)=1, 2x)k(x)-ux)(x)=0, @(x)=0. (8
Thus, we obtain

,u(X): . eR ©)
(

and hence
u(x)=n, #0,z(x)=0.
From the equation (7), we easily find that
p* =[c.c),|= ‘xz +MX + n‘,
meR, neR—- {O} i) If we consider equation (7), we get
(€, Ty, = Ax),
which means that the tangential component of the position vector of C is given by
(¢, T)y =x+my, where m €R.

iii) From the equation (7), it follows that the binormal component c" of
the position vector C is given by

and we get HCN Hg = |4 #0.
iv) If we consider equation (7) we easily get (c,B), = u = const.

Conversely, suppose that statement (I) or statement (ii) holds. Then we

have
(X)) T(x), =x+m,m eR. (10)

Differentiating equation (10) with respect to X, we obtain
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x(c,N), =0.
Since x(x)> 0, it follows that
(c(x),N(x), =0,

which means that ¢ is a rectifying curve. Next, suppose that statement (iii) holds.

Let us write
c(x) = 1(x)T(x)+c",1(x) e R.
Then we easily obtain that

(c",c"y, = K =constant =(c,c), —(c,T): (11)
If we differentiate equation (3.5) with respect to X, we get
(€, Ty, =(c,T), (L +x(c,N), ) (12)
Since p # const., we have
(€T), #0,
Morever , since x(x)> 0 and from (3.6) we obtain
(¢,N), =0,

that is C is a rectifying curve.
Finally, if the statement (iv) holds, then from the Frenet equations (5), we
get
(c,N), =0,
which means that C is a rectifying curve.
Theorem 3. Let C = C(x) be a curve in G;. Then up to isometries of G,, the
curve C is a rectifying if and only if there holds

) _ s
)~

where ac R—{0}, beR.

Proof. Let us first suppose that the curve C(X) is rectifying. From the equations (8)
and (9) we easily find that

N—"

T(_X:ax+b,aeR—{o},be R.

x(x)

Conversely, let us suppose that
7(X

X)

N—"

=ax+b,aeR-{0}beR.

—~

K
Then we may choose
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a:nil,b:r:—ll,n1 eR-{0},m eR.
Thus we have
7(x) _ x+m,
(x)  n

If we consider the Frenet equations (5), we easily find that

d

o (c00)= (xm, )T (x)=n,B(x)) = 0,
which means that C is a rectifying curve.
Theorem 4. Let C = C(X) be a curve in G,. Then ¢ is a rectifying curve if and
only if, up to a parametrization, C is given by

In,|
clt)=alt N, eR,
(0)=a) = n,

where a(t) is a curve lying in the Galilean sphere S?(1).
Proof. Let us suppose that C is a rectifying curve in G,. By Theorem 2. ,we have

p? = ||c||; =(x+m, )’ +n?,m eR,n, e R—{0}.
Also, we may apply a translation with respect to X, such that
p? = x*+nZ. Now, let define a curve a(x) lying in the Galilean sphere S?(1)
by
a(x) = @ (13)

Then we have

c(x) = a(x)x? +nZ. (14)

If we differentiate (14) with respect to X, we obtain
X
T(X) = o(X)——==—=+a' (x)y/x* +n?. (15)
JX2+n?
Since {a,a), =1, we have (a,a"), = 0. From (15) we get
2

_ _ 2 2 X
1=(T,T), =(y,y),(x +n1)+—xz+n12,

and hence

n;

YY), :m- (16)

From (16) we obtain
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h
Iy )= 2

Let define the parameter of the curve y by

(= J:”a' (u)], du

Then we have

-X[ |n1|
0

and therefore

=|n,|tanx. (17)
Substituting (17) into (18) we obtain the parametrization
In,|
clt)=alt)—/,n, eR 18
t)=alt) _on, (18)

Conversely, suppose that C is a curve defined by (18) where a(t) is a

curve lying in the Galilean sphere 82(1). Differentiating the equation (18) with
respect to t, we get

)= ((o)sint + & (t)cost)

By assumption we have (a',a'), =1, (a,a), =1 and (a,a'), =0. Thus it
follows that
n’ sint n’ In,|

€,C), m,@'c‘)g:

Let us put

c(t)=I(t) (t)+c"
where I(t)e R and c¢" is a normal component of the position vector ¢. Then we
have easily find that

(o),
.0,
and
N ~N - _<C’Cl>§
<C C >g _<C!C>g <Cl,Cl>g ' (19)
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2
n
If we consider the relation (c,C), = —12t in (19) we get
cos

(c",c"y, =nf = const,

nl
cost

and HCN H = const. and since p = ||c||g = # const. Thus, from Theorem 4.

implies that C is a rectifying curve in G,.

Examplel. Consider a curve ¢ = c(t) in G,

sin2t cos2t
c(t) = (0, , )
cost cost
X
where t = _[ > 1du. Then c is a rectifying curve in Galilean 3-space.
us+

0
Example 2. The curve ¢ = c(x) in G, defined by
c(x) = (0,3e% + 3 —10e (27X _10e(-V2-Dx _1 100(2-Dx | 10g(~2-Dxy
is a normal curve in Galilean 3-space.
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Qaliley fazasinda normal va diizalon ayrilor
Handan Oztokin
XULASO

Bu moqalads biz Qaliley fozasinda normal vo diizalon ayrilori dyronir vo bu fozada
diizolon oyrilorin parametrizasiyasini veririk.
Acar sozlar: normal oyri, diizolon oyri, Qaliley fozasi¢ Frenet disturu.

HopmanbHble U BbINpsIMIIeMble KPUBbIE B IpocTpaHcTBe [anuies
XanaaHn O3TekuH
PE3IOME

B crathe mccienyroTcss HOpMaabHBIE M BRIIPSMIIIEMBIE KPHBBIE B MPOCTPAHCTBE
Tanmunes u naercs mapaMeTpHU3anus BRIIPSIMILIEMBIX KPUBBIX B TOM IIPOCTPAHCTBE.

KiroueBble cjioBa: HopMallbHasl KpHBasi, BeIIpsIMIIAieMasl KpHUBas, IPOCTPAHCTBO
lanmnes, popmynsr @penera
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