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1.    Introduction 

          Galilean 3-space 3G  is simply defined as a Klein geometry of the product 

space 
2XER  whose symmetry group 6B  is Galilean transformation group which 

has an important place in classic and modern physics, for example, in quantum 

theory, gauge transformations in elactromagnetism, in mecanics and conductivitiy 

tensors in fluid dynamics, also in mathematical fields such as Lagrangian 

mechanics, dynamics and control theory, and so on (see [1]). 

A curve in Galilean 3-space 3G  is a graph of a plane motion. Note that 

such a curve is called a worldline in 3-dimensional Galilean space. It is well known 

that, the idea of worldlines originates in physics and was pioneered by Einstein. In 

physics, a world line of an object is the sequence of spacetime events 

corressponding to the history of the object. A world line is a special type of curve 

in spacetime. Each point of a world line is an event that can be labeled with the 

time and the spatial position of the object at that time. For example, the orbit of the 

Earth in space is approximately a circle, a three-dimensional curve in space. The 

Earth returns every year to the same point in space. However, it arrives there at a 

different time. The world line of the Earth is helical in spacetime and does not 

return to the same point. 

The word line is now most often in relativity theories, i.e., general 

relativity and special relativity. The theory of special relativity puts some 

constraints on possible word lines. In special relativity the description of spacetime 

is limited to special coordinate systems that do not accelerate, called inertial 

coordinate systems. In such coordinate systems, the speed of light is a constant. 

Word lines of particles or objects at constant speed are called geodesics. The use of 

word lines in general relativity is basically the same as in special relativity with the 

difference that spacetime can be curved. A metric exists and its dynamics are 
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determined by the Einstein field equations and are depended on the mass 

distribution in spacetime. 

From the differential geometric point of view, the study of curves in 3G  

has its own interest. Many interesting results on curves in 3G  have been obtained 

by many authors (see [4],[9]-[12]). 

In this study, other important subject is normal and rectifying curves in 

Galilean 3-space .G3  In the Euclidean 3-space, rectifying curves are introduced by 

B.Y. Chen in [2] as space curves whose position vectors always lies in its 

rectifying plane, spanned by the tangent and the binormal vector fields of the 

curve. Rectifying curves and normal curves in Euclidean space and Minkowski 

space are studied in [2],[5], [6]. A relationship between the rectifying curves and 

the centrodes, which play some important roles in mechanics, kinematics as well as 

in defining the curve of constant precession. 

The literature survey indicated that, there is no normal and rectifying 

curves in Galilean 3-space. Thus, the study is proposed to serve such a need. In this 

paper, making use of method in [2] and [5], we define the normal curve and 

rectifying curve in Galilean 3-space 3G  and characterize normal and rectifying 

curves lying fully in .G3  In particular, we prove that the ratio of torsion and 

curvature of any rectifying curve in 3G  is nonconstant linear function of the 

invariant parameter .x  Also we obtain a parametrization of rectifying curves lying 

fully in the Galilean 3-space. 

 

  2.      Preliminaries 
 

 Let ( )( )2222 +,,= dzdyzyRE  be Euclidean plane. The Galilean 3-space 

is a product space 

                              ( ) ( )zyExRG ,×= 2

3  

with Galilean group :B6  
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The Galilean group 6B  is generated by Euclidean motion group  2E  and 

constant velocity motions: 
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An element 6B∈f  is called a Galilei transformation. 

In 3G  there are four classes of lines: 

 a) (proper) nonisotropic lines - they do not meet the absolute line f . 

 b) (proper) isotropic lines - lines that do not belong to the plane w  but 

meet the absolute line .f  

 c) unproper nonisotropic lines - all lines of w  but .f  

 d) the absolute line .f   

Planes .const=x  are  Euclidean and so is the plane w . Other planes are 

isotropic, [8] .  

For a curve 3GI:c   , RI   parametrized by the invariant parameter 

x=s , is given in the coordinate form  

                                            .xz,xy,x=xc                                       (1) 

The curvature  xκ  and the torsion  xτ  are defined by 

       
      

 xκ

x'''c,x''c,x'cdet
=xτ,x''zx''y=xκ

2

22
              (2) 

The associated moving trihedron is given by 

         ,x'z,x'y1,=x'c=xT  
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 ,z,y,x=P iiii  1,2=i  is defined by 

                 
   






 .

x=x  if,zzyy

xx  if,xx
=P,P

21

2

12

2

12

2112

g21  

The Galilean cross product is defined for a  ,a,a,a= 321  b  321 b,b,b=  

by [12] 

                          ,

bbb

aaa

ee0

=ba

321

321

21

g  

  



H. OZTEKIN: NORMAL AND RECTIFYING … 

 101 

One can see that 
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takes value in .B6  This mapping  xF  is called the Galilei frame of  sc . The 

Galilei frame satisfies the following Frenet equations: 
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From formulas (5), we have the following relation [11] 

            xNxxBxxxc  ='''                            (6) (2.6) 

The vectors N,T  and B  are called the tangent, the principal normal and 

the binormal vector of c , respectively. 

The planes spanned by the vector  ,, NT   ,, BN   BT ,  are called the 

osculating plane, the normal plane and the rectifiying plane. 

  Galilean sphere of radius 1 and center at the origin is defined by 

    ,1=,∈=1 3

2

gvv|GvS  

[4]. 

 

3.       Some characterizations of normal and rectifying curves in 3G  

 

In this section, we define the normal curve and rectifying curve in 3G  and 

give some characterizations for normal curves and rectifying curves lying fully in 

the Galilean 3 -space. 

Definition 1. Let  xcc =  be a curve in 3 -dimensional Galilean space .G3  If the 

position vector of c  always lies in its normal plane then it is called normal curve in 

.G3  

By definition, for a curve in 3G , the position vector c  satisfies 

                       ),()()()(=)( xBxηxNxξxc   

where x  is a Galilean invariant-the arc length on c  and )(),( xηxξ  are 

differentiable functions 
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Theorem 1. Let  xcc =  be a normal curve in 3G  with constant 

curvature 0>κ  and nonzero constant torsion .τ  Then c  is a normal curve if and 

only if the principal normal and binormal components of the position vector c  are 

given by 
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respectively, where 321 ,, CCC  and  4C are constants. 

Proof. Let us suppose that  xc  is a normal curve, then from Definition 1, we have  

                   ).()()()(=)( xBxηxNxξxc   

By taking the derivative of this equation with respect to x  twice and using the 

Frenet equations (2.5), we get following linear differential equation system 

 κξττηξ ''' =2 2  

 0.=2 2ηττξη '''   

By solving this system, we obtain 
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respectively, where 321 ,, CCC  and 4C  are constants, which completes the proof. 

Definition 2. Let c  be a curve in 3-dimensional Galilean space .G3  If the position 

vector of c  always lies in its rectifying plane then it is called rectifying curve in 

.G3  

Theorem 2. Let  xcc =  be a rectifying curve in 3G , the curvature   0.>xκ  

Then the following statements hold: 

 i  The distance function cρ =  satisfies 

                                ,= 22 nmxxρ   

for some ,Rm   .0Rn  

 ii  The tangential component of the position vector of c  is given by 

                                       ,=, 1mxTc g   

where .1 Rm   

 iii  The normal component 
Nc  of the position vector of the curve has a 

constant length. 

 

 iv  The binormal component of the position vector of the curve c  is 

constant. 
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Conversly, if  xcc =  is a curve in 
3G

 and one of the statements  ,i  

 ,ii  and  ,iii   iv  holds, then c  is a rectifying curve. 

Proof.  Let us assume that ( )xc=c  is a rectifying curve in 3G . Then from 

Definition 1., we can write the position vector of c  by 

                              ,= xBxμxTxλxc                                  (7) 

where ( )xλ  and ( )xμ  are some differentiable functions of the invariant parameter 

x .  

)i  Differentiating the equation (7) with respect to x  and considering the 

Frenet equations (5) we get 

                                0.=0,=1,= x'μxτxμxκxλx'λ        (8) 

Thus, we obtain 

   Rmmxxλ  11,=  

   Rnnxμ 11 ,=                                                                      (9) 

         0,= xκxλxτxμ  

and hence 

                                 0.0,= 1  xτnxμ  

From the equation (7), we easily find that 

                        ,=,= 22 nmxxccρ g                                          

,Rm   .0Rn )ii  If we consider equation (7), we get 

                                       ,=, xλTc g  

which means that the tangential component of the position vector of c  is given by 

,=, 1mxTc g   where .1 Rm   

)iii  From the equation (7), it follows that the binormal component 
Nc  of 

the position vector c  is given by  

                                           Bμc N =  

and we get 0.= μc
g

N
 

)iv  If we consider equation (7) we easily get .==, constμBc g  

Conversely, suppose that statement  i  or statement  ii  holds. Then we 

have  

                                   .,=, 11 RmmxxTxc g                              (10) 

 

 

Differentiating equation (10) with respect to x , we obtain 
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                                0.=, gNcκ   

Since   0>xκ , it follows that  

                                        0,=, gxNxc   

which means that c  is a rectifying curve. Next, suppose that statement  iii  holds. 

Let us write 

                                  .,= RxlcxTxlxc N   

Then we easily obtain that  

       
2,,===, ggg

NN TcccttanconsKcc                            (11) 

If we differentiate equation ( )3.5  with respect to ,x  we get 

                         .,1,=, ggg NcκTcTc                                 (12) 

Since .constρ  , we have  

                                                 0.,  gTc  

Morever , since   0>xκ  and from ( )3.6  we obtain 

                                               0,=, gNc   

that is c  is a rectifying curve.  

Finally, if the statement  iv  holds, then from the Frenet equations (5), we 

get 

0,=, gNc   

which means that c  is a rectifying curve. 

Theorem 3. Let  xcc =  be a curve in 3G . Then up to isometries of 3G , the 

curve c  is a rectifying if and only if there holds 

 
 

,= bax
xκ

xτ
  

where  ,0Ra  Rb . 

Proof. Let us first suppose that the curve  xc  is rectifying. From the equations (8) 

and (9) we easily find that  

 
 

  .,0,= RbRabax
xκ

xτ
  

 

Conversely, let us suppose that 

 
 

  .,0,= RbRabax
xκ

xτ
  

Then we may choose  



PROCEEDINGS OF  IAM, V.5, N.1, 2016 

 

 106 

  .,0,=,
1

= 11

1

1

1

RmRn
n

m
b

n
a   

Thus we have  

 
 

.=
1

1

n

mx

xκ

xτ 
 

If we consider the Frenet equations (5), we easily find that 

         0,=11 xBnxTmxxc
dx

d
  

which means that c  is a rectifying curve. 

Theorem 4. Let  xcc =  be a curve in .G3  Then c  is a rectifying curve if and 

only if, up to a parametrization, c  is given by 

    ,,= 1

1
Rn

tcos

n
tαtc   

where  tα  is a curve lying in the Galilean sphere  12S . 

Proof. Let us suppose that c  is a rectifying curve in .G3  By Theorem 2. ,we have  

   .0,,== 11

2

1

2

1

22  RnRmnmxcρ
g

 

Also, we may apply a translation with respect to x , such that 

.= 2

1

22 nxρ   Now, let define a curve  xα  lying in the Galilean sphere  12S  

by 

 
 
 

.=
xρ

xc
xα  (13) 

Then we have  

     .= 2

1

2 nxxαxc                                       (14) 

If we differentiate (14) with respect to x , we obtain 

       .= 2

1

2

2

1

2
nxx'α

nx

x
xαxT 


              (15) 

Since 1,=, gαα   we have 0.=, g'αα   From (15) we get  

  ,,=,=1
2

1

2

2
2

1

2

nx

x
nx'y'yTT gg


  

and hence  

 .
)(

=,
22

1

2

2

1

nx

n
'y'y g


                                      (16) 

From (16) we obtain  
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  .=
2

1

2

1

nx

n
x'y


 

Let define the parameter of the curve y  by  

 
x

g
duu'αt

0

.=  

Then we have  

 

x

du
nu

n
t

0

2

1

2

1
=  

and therefore  

.= 1 xtannx  (17) 

Substituting (17) into (18) we obtain the parametrization  

    Rn
tcos

n
tαtc 1

1
,=  (18) 

Conversely, suppose that c  is a curve defined by (18) where  tα  is a 

curve lying in the Galilean sphere  .12S  Differentiating the equation (18) with 

respect to t , we get  

      .=
2

1
tcost'αtsintα

tcos

n
t'c   

By assumption we have 1,=, g'α'α   1=, gαα   and 0.=, g'αα   Thus it 

follows that  

.==,,=,
2

1

4

2

1

3

2

1

tcos

n
'cand

tcos

n
'c'c

tcos

tsinn
'cc

ggg   

Let us put  

      ,= Nct'ctltc   

where   Rtl   and 
Nc  is a normal component of the position vector c .  Then we 

have easily find that 

g

g

'c'c

'cc
l





,

,
=  

and 

.
,

,
,=,

2

g

g
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NN

'c'c

'cc
cccc




  (19) 
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If we consider the relation 
tcos

n
cc g 2

2

1=,   in (19) we get  

.==, 2

1 constncc g

NN   

and .= constcN
 and since .== 1 const

tcos

n
cρ

g
  Thus, from Theorem 4. 

implies that c  is a rectifying curve in .G3  

 

Example1. Consider a curve )(= tcc  in 3G   

),
2

,
2

(0,=)(
tcos

tcos

tcos

tsin
tc  

where  

x

du
u

t
0

2
.

1

1
=  Then c  is a rectifying curve in Galilean 3-space. 

Example 2. The curve )(= xcc  in 3G  defined by 

 )101,1010103(0,3=)( 1)2(1)2(1)2(1)2( xxxxxx eeeeeexc    

is a normal curve in Galilean 3-space. 
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Qaliley fəzasında normal və düzələn əyrilər 

 

Handan Öztəkin 

 

XÜLASƏ 

 
Bu məqalədə biz Qaliley fəzasında normal və düzələn əyriləri öyrənir və bu fəzada 

düzələn  əyrilərin parametrizasiyasını veririk. 

Açar sözlər: normal əyri, düzələn əyri, Qaliley fəzasıç Frenet düsturu. 

 
Нормальные и выпрямляемые кривые в пространстве Галилея 

 

Хандан Озтекин 

 

РЕЗЮМЕ 

 
В статье исследуются нормальные и выпрямляемые кривые в пространстве 

Галилея и дается параметризация выпрямляемых кривых в этом пространстве. 

Ключевые слова: нормальная кривая, выпрямляемая кривая, пространство 

Галилея, формулы Френета 

 

  

 

 

  


